GraBCas: a bioinformatics tool for score-based prediction of Caspase- and Granzyme B-cleavage sites in protein sequences
نویسندگان
چکیده
Caspases and granzyme B are proteases that share the primary specificity to cleave at the carboxyl terminal of aspartate residues in their substrates. Both, caspases and granzyme B are enzymes that are involved in fundamental cellular processes and play a central role in apoptotic cell death. Although various targets are described, many substrates still await identification and many cleavage sites of known substrates are not identified or experimentally verified. A more comprehensive knowledge of caspase and granzyme B substrates is essential to understand the biological roles of these enzymes in more detail. The relatively high variability in cleavage site recognition sequence often complicates the identification of cleavage sites. As of yet there is no software available that allows identification of caspase and/or granzyme with cleavage sites differing from the consensus sequence. Here, we present a bioinformatics tool 'GraBCas' that provides score-based prediction of potential cleavage sites for the caspases 1-9 and granzyme B including an estimation of the fragment size. We tested GraBCas on already known substrates and showed its usefulness for protein sequence analysis. GraBCas is available at http://wwwalt.med-rz.uniklinik-saarland.de/med_fak/humangenetik/software/index.html.
منابع مشابه
CaSPredictor: a new computer-based tool for caspase substrate prediction
MOTIVATION In vitro studies have shown that the most remarkable catalytic features of caspases, a family of cysteineproteases, are their stringent specificity to Asp (D) in the S1 subsite and at least four amino acids to the left of scissile bound. However, there is little information about the substrate recognition patterns in vivo. The prediction and characterization of proteolytic cleavage s...
متن کاملCloning, molecular analysis and epitopics prediction of a new chaperone GroEL Brucella melitensis antigen
Objective(s):Brucellosis is a well-known domestic animal infectious disease, which is caused by Brucella bacterium. GroEL antigen increases Brucella survival and is one of the major antigens that stimulates the immune system. Hence, the objective of the present study was cloning and bioinformatics analysis of GroEL gene. Materials and Methods: The full-length open reading frame of this gene was...
متن کاملAutomatic classification of highly related Malate Dehydrogenase and L-Lactate Dehydrogenase based on 3D-pattern of active sites
Accurate protein function prediction is an important subject in bioinformatics, especially wheresequentially and structurally similar proteins have different functions. Malate dehydrogenaseand L-lactate dehydrogenase are two evolutionary related enzymes, which exist in a widevariety of organisms. These enzymes are sequentially and structurally similar and sharecommon active site residues, spati...
متن کاملCaspase Cleavage Motifs of Influenza Subtypes Proteins: Alternations May Switch Viral Pathogenicity
Background and Aims: The caspases are unique proteases that mediate the host cell apoptosis during viral infection. In this study, we identified the caspase cleavage motifs of H5N1 and H9N2 influenza viruses isolated during 1998-2012. Materials and Methods: Amino acid sequences of the eleven proteins encoded by the viruses as the caspase substrates downloaded from NCBI. The caspase cleavage mot...
متن کاملPrediction of caspase cleavage sites using Bayesian bio-basis function neural networks
MOTIVATION Apoptosis has drawn the attention of researchers because of its importance in treating some diseases through finding a proper way to block or slow down the apoptosis process. Having understood that caspase cleavage is the key to apoptosis, we find novel methods or algorithms are essential for studying the specificity of caspase cleavage activity and this helps the effective drug desi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nucleic Acids Research
دوره 33 شماره
صفحات -
تاریخ انتشار 2005